
Chapter 3

A Land Surface Model for Data
Assimilation

Selecting a hydrologic model for the land surface data assimilation problem is not an easy
task. The model must capture the key physical processes adequately, but at the same
time it must be efficient enough to make large-scale optimal estimation computationally
feasible. In addition, the variational data assimilation approach also requires a differentiable
model. From the variety of models described in the literature, we develop a land surface
scheme especially designed for data assimilation purposes. Our land surface scheme is a
simple model for moisture and heat transport in the unsaturated soil zone and at the land-
atmosphere boundary, together with a Radiative Transfer model relating the soil moisture
and temperature to the remotely sensed brightness temperature.

A key assumption is to neglect lateral flow in the unsaturated zone, which is reason-
able for terrain with moderate relief and on the spatial scales under consideration. The
model domain thus breaks down into a collection of one-dimensional vertical cells or pixels
(Figure 4.1). In this Chapter we describe the one-dimensional vertical components of the
land surface model and the Radiative Transfer scheme. In Chapter 4 we then describe in
detail how these one-dimensional model components can be used in a fully four-dimensional
(space and time) land surface data assimilation algorithm.

First, in Section 3.1, we present the one-dimensional model for the moisture and heat
dynamics. We use Richards’ equation for the moisture transport and the force-restore
approximation for the soil temperature. A conceptually similar model of the soil processes
has been presented by Ács et al. [1991]. The vegetation model is similar to the Simplified
Biosphere Model (SSiB) developed by Xue et al. [1991]. In Section 3.2 we describe the
Radiative Transfer (RT) model. The RT model consists of a soil part, including (1) the
Dobson mixing model for the wet soil dielectric constant, (2) the Fresnel equations for the
soil microwave emissivity, and (3) the gradient RT model or the grey body approximation
for the effective soil temperature, and of a vegetation part.

A comprehensive list of all symbols used in the hydrologic model can be found in Ap-
pendix B.1. Note the notational convention to label most of the empirical constants in the
various parameterizations with κ for scalars and with β for distributed parameters. The
constants are superscripted with the variable which is being parameterized and subscripted
with a number in case more than one empirical constant is needed.
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3.1 Moisture and Heat Transport Model

In this Section we describe a simple one-dimensional model for moisture and heat transport
in the unsaturated soil zone and at the land-atmosphere boundary. The moisture dynamics
are modeled with Richards’ equation, whereas the temperature submodel relies on the
force-restore approximation of the heat equation. The dynamics of the moisture and the
temperature are coupled via the heat capacity, which depends on the moisture content, and
via the evapotranspiration rate/latent heat flux at the land surface. The transport of soil
water vapor is entirely neglected. The downward flux of water out of the bottom layer is
described by gravitational drainage only. The vegetation submodel is designed after the
Simplified Biosphere Model (SSiB) Xue et al. [1991].

3.1.1 Soil Moisture Submodel

Vertical unsaturated flow is described with a modified version of Richards’ equation ne-
glecting soil vapor movement and flow due to thermal gradients.

∂θg

∂t
=

∂

∂z
Ku

∂

∂z
(ψg + z)− Sg (3.1)

The volumetric moisture content is denoted with θg [m
3/m3], the matric head with ψg [m],

and the unsaturated hydraulic conductivity with Ku [m/s]. The sink term Sg [1/s] accounts
for root water uptake through transpiration.
At the surface, the boundary condition is the net flux resulting from precipitation falling

through the canopy Pt [m/s] and from evaporation from the ground surface Eg [kg/m
2/s]

qt = −Pt +Eg/ρw (3.2)

where ρw [kg/m
3] is the density of liquid water. Note that Pt is defined as a positive

quantity. The gravity drainage from the bottom layer is given by

qb = −Ku(zbottom) (3.3)

The soil hydraulic properties are parameterized with the model by Clapp and Hornberger
[1978]

ψg = ψ
CHW−BCH

g Wg =

(
ψg

ψCH

)−1/BCH
(3.4)

Ku = KsW
2BCH+3
g Ku = Ks

(
ψg
ψCH

)−(2BCH+3)/BCH
(3.4a)

where the soil wetness or saturation Wg [−] is related to the volumetric soil moisture con-
tent θg and the porosity θs through Wg = θg/θs. The hydraulic conductivity at saturation
is denoted with Ks. The “matric head at saturation” ψ

CH and the parameter BCH are
empirical constants.
Recent results on robust solvers for Richards’ equation can be found in [Miller et al.,

1998]. We discretize Richards’ equation following the mass conservative scheme developed
by Celia et al. [1990]. For details on the discretized equations see [Simunek et al., 1997].
Here we only introduce the notation for the vertical discretization. The locations of the Nz
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vertical nodes are collected into the vector z [m], and the thickness of the layers between
the nodes is denoted with ∆ [m].

z1
z2
...
zNz



∆1
∆2
...

∆Nz−1

 =


z2 − z1
z3 − z2
...

zNz − zNz−1

 (3.5)

The vertical coordinate z [m] increases upward and the locations of the bottom and the top
nodes are z1 and zNz , respectively. Note that the vector ∆ has Nz − 1 elements.
From the node locations we derive the locations z̄ [m] of the mid-points in between

the nodes and the thickness ∆̄ [m] of the layers between the mid-points, which is also the
thickness of the layers “around” the finite difference nodes.

z̄1
z̄2
...
z̄Nz
z̄Nz+1

 =


z1
z1+z2
2
...

zNz−1+zNz
2
zNz




∆̄1
∆̄2
...

∆̄Nz−1
∆̄Nz

 =


z̄2 − z̄1
z̄3 − z̄2
...

z̄Nz − z̄Nz−1
z̄Nz+1 − z̄Nz

 =


∆1
2

∆1+∆2
2
...

∆Nz−2+∆Nz−1
2

∆Nz−1
2

 (3.6)

It is convenient to define the bottom and the top point as the first and the last mid-points.
The vector z̄ is thus of length Nz + 1, and the vector ∆̄ is of length Nz.

3.1.2 Soil Temperature Submodel

The temperature submodel is based on the force-restore method [Bhumralkar, 1975; Dear-
droff, 1978; Lin, 1980; Dickinson, 1988; Hu and Islam, 1995]. The force-restore approxi-
mation relies on the analytical solution of the heat equation under periodic forcing, which
is used to parameterize the almost periodic daily ground heat flux. In this way, a very
simple and efficient but reasonably accurate description of the temperature dynamics can
be achieved. Only two layers are considered, a surface layer of thickness δg [m] at temper-
ature Tg [K], and a deeper layer, which serves as a heat reservoir. The deeper layer is at
temperature Td [K], the depth-average temperature of the soil. The prognostic equation
for the temperature Tg in the surface layer is

∂Tg

∂t
= Γg

[
Γ′gGg/Cg − (Tg − Td)

]
(3.7)

Here Gg [W/m2] is the ground heat flux evaluated at the surface, and the coefficients
Cg [J/m

3/K], Γg [1/s], and Γ
′
g [s/m] are discussed below.

At the ground surface, the energy balance (in [W/m2]) consists of the net shortwave
radiation Rnetgs , the net longwave radiation R

net
gl , the latent heat flux LEg, and the sensible

heat flux Hg. The latent heat of vaporization L [J/kg] is used to convert the mass flux E
into a latent heat flux.

Gg = R
net
gs +R

net
gl − LEg −Hg (3.8)

The coefficients Γg [1/s] and Γ
′
g [s/m] are given by

Γg =
ωd
αg

Γ′g =

√
2

KTωd
=
2

dgωd
(3.9)
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where the coefficient αg is discussed below, and the damping depth dg [m] of the daily
temperature forcing is

dg =

√
2λg
ωdCg

=

√
2KT

ωd
(3.10)

The angular frequency ωd = 2π/86400/s enters from the consideration of the analytical for-
mulation with diurnally periodic forcing. The volumetric heat capacity is denoted with Cg
[J/m3/K] and the thermal conductivity with λg [W/m/K]. Both depend on the soil mois-
ture content and thus vary with time (Section 3.1.7). Lastly, we define thermal diffusiv-
ity KT [m

2/s] as

KT =
λg

Cg
. (3.11)

As discussed in Section 3.1.7 we use a constant thermal diffusivity, implying that both Γg
and Γ′g are constant.
Following [Hu and Islam, 1995], the different versions of the force-restore method can

be described by different expressions for the dimensionless coefficient αg. We will use the
version proposed by Hu and Islam [1995], which minimizes the approximation error of the
soil temperature at depth δg. The computationally efficient polynomial approximation to
the optimal αg is

αg = 1 + κ
αg
1 (δg/dg) + κ

αg
2 (δg/dg)

2 + κ
αg
3 (δg/dg)

3 + κ
αg
4 (δg/dg)

4 (3.12)

κ
αg
1 = 0.943 κ

αg
2 = 0.223 κ

αg
3 = 1.68 · 10

−2 κ
αg
4 = −5.27 · 10

−3

which is valid for 0 ≤ δg/dg ≤ 5. The closed form for greater values of δg/dg can be found in
[Hu and Islam, 1995]. If we keep in mind that δg is the modeled depth of the surface layer
in which the temperature varies diurnally, and that dg is the damping depth of the forcing,
we see that δg/dg should not be far from unity to be consistent. Therefore, the polynomial
approximation (3.12) will be appropriate for all practical purposes.
It should be noted that the force-restore versions of Bhumralkar [1975] and of Lin [1980],

using αg = 1 + 2δg/dg and αg = 1 + δg/dg, respectively, can be considered special cases
of (3.12). They yield similar results for large (Bhumralkar) and small (Lin) values of δg/dg,
respectively. For details see [Hu and Islam, 1995].

3.1.3 Vegetation Submodel

The vegetation is modeled with a standard resistance network for the latent and sensible
heat fluxes (Figure 3.1).

Canopy Heat Submodel

We assume zero heat capacity for the canopy. The canopy energy balance reads

Rnetcs +R
net
cl − LEct − LEce −Hc = 0 (3.13)

consisting of the net shortwave radiation Rnetcs , the net longwave radiation R
net
cl , the latent

heat fluxes LEct and LEce from the dry and wet portions of the canopy (canopy transpiration
and canopy evaporation), and the sensible heat flux Hc. All fluxes are measured in [W/m2].
This energy balance is solved for the canopy temperature Tc [K].
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Figure 3.1: Resistance network (after [Xue et al., 1991])

Canopy Water Submodel

If vegetation is present, the canopy intercepts the precipitation. The balance equation for
the water Wc [m] stored in the canopy (per unit area) reads

∂Wc

∂t
= Pi − Ece/ρw −Dc (3.14)

The intercepted flux is denoted with Pi [m/s]. The evaporation from the wet canopy is

Ece [kg/m
2/s], and Dc [m/s] accounts for dripping off the canopy. We use Dc = Wc/t

drip
c ,

with a typical dripping time tdripc [s] on the order of 0.5d [Thompson and Pollard, 1995].
A simple parameterization for the intercepted precipitation and the evaporation from

the wet canopy is

Pi = min (fcPr, (W
max
c −Wc)/∆t)

Ece = min
(
Epotce , ρwWc/∆t

) (3.15)

We denote with fc [−] the fraction of the land surface which is shaded by the canopy.
Pr [m/s] is the precipitation at screen (or reference) height zr [m] as measured by the
meteorologic station. (Recall that precipitation is defined as a positive quantity.) Epotce is
the potential evaporation from the wet canopy assuming unlimited water supply. Wmax

c [m]
is the canopy storage capacity, and ∆t [s] is the numerical time step. Equation (3.15)
approximately constrains the water stored in the canopy to be nonnegative and less than
the storage capacity, Wc .Wmax

c . We write the canopy storage capacity as

Wmax
c = fcLSAIκ

Wc (3.16)
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where LSAI [−] is the sum of the one-sided leaf area index LAI [−] and the stem area index
SAI [−]. The parameter κWc [m] is on the order of κWc ≈ 10−4 . . . 10−3m [Abramopoulos
et al., 1988]. Finally, we have for the throughfall

Pt = Pr +Dc − Pi (3.17)

Canopy Air Submodel

We also assume zero heat capacity for the canopy air. The energy balance reads

Ha = Hc +Hg (3.18)

where Ha [W/m2] is the overall sensible heat flux to the atmosphere. This energy balance
is solved for the temperature of the canopy air Ta [K]. The mass balance within the canopy
air space is

LEa = LEg + LEct + LEce (3.19)

where LEa [W/m2] is the overall evapotranspiration to the atmosphere. This mass balance
is solved for the vapor pressure of the canopy air ea [mb].

3.1.4 Radiation Balance

All radiation fluxes are in [W/m2]. The downwelling shortwave and longwave radiation at
reference height above the canopy are denoted with Rrs and Rrl, respectively. For the net
fluxes at the ground surface and at the canopy we have [Deardroff, 1978]

Rnetgs = (1− fc)(1 − ag)Rrs (3.20)

Rnetgl = (1− fc)εg(Rrl − σT
4
g ) + fc

εcεg

εc + εg − εcεg
σ(T 4c − T

4
g ) (3.21)

Rnetcs = fc(1− ac)Rrs (3.22)

Rnetcl = fc

[
εcRrl +

εc
εc + εg − εcεg

εgσT
4
g −

εc + 2εg − εcεg
εc + εg − εcεg

εcσT
4
c

]
(3.23)

where ag, ac, εg, and εc [−] denote the albedos (shortwave) and emissivities (longwave)
of the ground and the canopy, respectively, and σ [W/m2/K4] is the Stefan-Boltzmann
constant.
The parameterization for the ground surface albedo follows [Idso et al., 1975].

ag = κ
ag
1 − κ

ag
2 Wg(ztop) κ

ag
1 = 0.25 κ

ag
2 = 0.125 (3.24)

The canopy albedo is on the order of ac ≈ 0.16 . . . 0.2 for grassland and crops.
We compute the downwelling longwave radiation from the air temperature

Rrl = εrσT
4
r (3.25)

and the expressions for the air and the ground surface emissivities are

εr = κ
εr
1 + κ

εr
2 er κεr1 = 0.74 κεr2 = 0.0049 (3.26)

εg = κ
εg
1 + κ

εg
2 θg κ

εg
1 = 0.9 κ

εg
2 = 0.18 (3.27)
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Tr [K] is the atmospheric temperature at screen height, and er [mb] is the water vapor
pressure at screen height. The formulation of the soil surface emissivity is taken from
[Chung and Horton, 1987]. The expression (3.26) for the atmospheric emissivity is known
as the Idso-formula. For the volumetric soil moisture affecting the long wave radiation we
use the top node moisture content θg = θg(ztop). The canopy emissivity is on the order
of εc ≈ 0.95 . . . 1.
With both the emissivities for the ground and the canopy being close to unity, we can

expand the above equations into series in (1− εg) and (1− εc). Using

εc + εg − εcεg ≡ 1− (1− εc)(1− εg)

and neglecting terms of second order or higher we get

Rnetgl = (1− fc)εg(Rrl − σT
4
g ) + fc(εc + εg − 1)σ(T

4
c − T

4
g ) (3.21a)

= (1− fc)εgRrl − [εg + fc(εc − 1)]σT
4
g + fc(εc + εg − 1)σT

4
c

Rnetcl = fc
[
εcεrσT

4
r + (εc + εg − 1)σT

4
g − (2εc + εg − 1)σT

4
c

]
(3.23a)

These expressions are used in the model.

3.1.5 Sensible and Latent Heat Fluxes

All sensible and latent heat fluxes are determined with a resistance formulation.1

Ha = ρaca
Ta − Tr
ra

(3.28)

Hg = (1− fc)ρaca
Tg − Ta
rd

(3.29)

Hc = 2LSAI fcρaca
Tc − Ta
rc

(3.30)

LEa =
ρaca
γ

(ea − er)

ra
(3.31)

LEg = (1− fc)
ρaca
γ

(es(Tg)− ea)

rg + rd
(3.32)

LEpotce = fcfceLSAI
ρaca
γ

(es(Tc)− ea)

rc
(3.33)

LEpotct = fc(1− fce)LAI
ρaca
γ

(es(Tc)− ea)

rc + rs
(3.34)

LEct = χg(Wg)LE
pot
ct (3.35)

All latent and sensible heat fluxes are expressed in [W/m2]. The air density is denoted
with ρa [kg/m

3], the specific heat of air at constant pressure with ca [J/kg/K], and the
psychometric constant with γ [mb/K]. The temperature of the canopy is Tc [K]. The
vapor pressure and the temperature within the canopy air space are ea [mb] and Ta [K],

1Note that we can rewrite the evapotranspiration rate as Ea = ρa(qa − qr)/ra by using γ = capr/Lε and
qr = εer/pr, where qr is the specific humidity, pr the air pressure, and ε the ratio of the gas constants,
ε = Rdry air/Rvapor = 0.622.
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respectively. Furthermore, er [mb] and Tr [K] are the vapor pressure and the air temperature
at screen or reference height as given by the meteorologic measurements, and es(T ) [mb] is
the saturation vapor pressure at temperature T , calculated by the empirical formula

es(T ) = 6.11 exp

{
17.4(T − T0)

T − 34.16

}
(3.36)

where T0 = 273.15K. Moreover, the fraction of the canopy which is wet and from which
water is directly evaporated is denoted with fce [−] and modeled after [Abramopoulos
et al., 1988]

fce = (Wc/W
max
c )κ

fce
(3.37)

The resistances rx and the stress function χg(Wg), which parameterizes water-limited tran-
spiration, are discussed in Section 3.1.6.

3.1.6 Resistances

The resistances can be partitioned into the aerodynamic resistances ra, rd, rc and the sur-
face resistances rg, rs. All resistances are measured in [s/m]. Water-limited (stressed)
transpiration is parameterized with the stress function χg(Wg) [−].

Aerodynamic Resistances

In our scheme we have three aerodynamic resistances: the atmospheric resistance between
the canopy air space and the reference level in the atmosphere ra, the resistance between
the leaves and the canopy air space rc, and the resistance between the soil surface and the
canopy air space rd (Figure 3.1).

The atmospheric resistance for neutral conditions (in terms of buoyancy) can be obtained
by elimination of the friction velocity u∗ [m/s] from the expression (3.39). The friction
velocity is a parameter in the logarithmic wind profile (3.38).

ur =
u∗
K
ln

[
zr − dc
z0

]
(3.38)

ra =
ln
[
zr−dc
z0

]
Ku∗

=
ln2
[
zr−dc
z0

]
K2ur

(3.39)

Here, ur [m/s] is the wind velocity at the reference height zr [m], K = 0.4 is the von Karman
constant, and z0 [m] is the roughness length. The zero displacement height dc [m] accounts
for the geometric effect of vegetation stands. If vegetation of height hc [m] is present, we
use

dc = κ
dchc and z0 = κ

z0hc (3.40)

with κdc = 0.63 and κz0 = 0.13 [Abramopoulos et al., 1988]. Although strictly speaking the
zero displacement height vanishes for bare soils, we can still use (3.40) by setting hc = z0/κ

z0

with a roughness length on the order of z0 ≈ 2.5mm, which is typical for bare soils. Note
that in this case zr � dc and the error introduced by using (3.40) for bare soil is negligible.

62



For nonneutral conditions, stability corrections can be taken into account. These cor-
rections are usually parameterized with the gradient Richardson number or the Monin-
Obukhov length. Detailed expressions can be found in [Ács et al., 1991]. We will confine
ourselves to the assumption of neutral conditions.

For the other two aerodynamic resistances, we use parameterizations from [Sellers and
Dorman, 1987].

rc =
βrc
√
uc

(3.41)

rd =
βrd

uc
(3.42)

The wind speed uc [m/s] at the canopy top can be obtained from the wind profile (3.38) as

uc = ur ln

[
hc − dc
z0

]
ln−1

[
zr − dc
z0

]
(3.43)

Note that a measurement of zero wind speed would lead to numerical problems because
the resistances diverge. Such problems are easily overcome by preprocessing and setting
all measurements of zero wind speed to a minimum of 0.01m/s. This is well below the
instrument resolution and the error inflicted is negligible.

Surface Resistances

The surface resistance of bare soil rg [s/m] parameterizes the effect of soil-water limited
evaporation. If the upper soil layer is not saturated, the water evaporates at some depth
in the soil and must reach the surface through diffusion. We work with the following
formulation,

rg = κ
rg exp (βrg(W rg −Wg)) (3.44)

which depends on three parameters. At saturations Wg & W rg the surface resistance rg .
κrg ≡ 10s/m becomes negligible when compared to rd. The third parameter is the maximum
surface resistance rmaxg at zero saturation, which determines βrg = 1/W rg ln(rmaxg /κrg ).
Typical values are W rg ≈ 0.25 . . . 0.6 and rmaxg ≈ 3000 . . . 7000s/m, depending on the
texture of the soil in question. Finer soils have higher surface resistances. Figure 3.2 shows
the bare soil resistance as a function of the volumetric soil moisture content. Also shown
are two formulations by Kondo et al. [1990] and by van de Griend and Owe [1994], which
we will not discuss here.

The stomatal resistance rs [s/m] describes the closure of the plants’ stomate due to
environmental impacts [Lhomme et al., 1998]. The most important factors determining the
transpiration under unstressed conditions (no water limitation) are shortwave (or photosyn-
thetically active) radiation, temperature, and vapor deficit, although some authors believe
that the dependence on vapor deficit is an artificial effect. We only retain the dependence
of rs on the shortwave radiation, which essentially shuts off transpiration at night. We use
a formulation equivalent to the one in [Dorman and Sellers, 1989]

rs = r
min
s χc(Rrs) (3.45)
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Figure 3.2: Bare soil resistance from (3.44) as a function of the volumetric soil moisture
content using W rg = 0.6 and rmaxg = 6500s/m. For comparison, we also show the
parameterizations by Kondo et al. [1990] and by van de Griend and Owe [1994].

where

χc(Rrs) =

{
κχc1 Rrs < 0
Rrs/κ

χc
2 +1

Rrs/κ
χc
2 +1/κ

χc
1

Rrs = 0
(3.46)

Typical values are rmins ≈ 30 . . . 50s/m, κχc1 ≈ 50 . . . 100, and κ
χc
2 ≈ 100 . . . 200W/m2.

The factor χg(Wg) in (3.35) parameterizes the conditions of water-limited transpiration.
The total stress is given by the sum over the individual stress terms at the i = 1 . . . Nz nodes
of the vertically discretized soil moisture model.

χg(Wg) =

Nz∑
i=1

χgi(Wgi) χgi(Wgi) =
fRi

1 + ψgi/ψwilt
=

fRi

1 +
ψCHi
ψwilt

1

WBCH
gi

(3.47)

We used (3.4) to obtain the last equality. We denote with ψwilt [m] the matric head at
which the plants start wilting. A typical number is the equivalent of −15bar [Dickinson
et al., 1993]

ψwilt = −15bar/ρw/g = −153m (3.48)

The acceleration due to gravity is g = 9.81m2/s. The root distribution factor fRi > 0
measures the root density attributed to node i. We use a simple exponential model for the
continuous root density ρR [1/m] with maximum density at the top.

ρR(z) =

(
1

dR

)
exp( zdR )

exp(
zNz
dR
)− exp( z1dR )

(3.49)
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where dR > 0 [m] is a typical rooting depth. For the root distribution factor fRi we obtain

fRi =

z̄i+1∫
z̄i

ρR(z)dz =
exp(

z̄i+1
dR
)− exp( z̄idR )

exp(
zNz
dR
)− exp( z1dR )

(3.50)

Note that ρR(z) is normalized on the interval [z1, zNz ] and that
∑Nz

i=1 fRi = 1.

Finally, we can give an expression for the sink term as it appears in the discretized form
of Richards’ equation (3.1).

∆̄iSgi = χgi(Wgi)E
pot
ct /ρw (3.51)

3.1.7 Thermal Properties of the Soil

The volumetric heat capacity of the surface layer depends on the soil moisture content
according to [Simunek et al., 1997]

Cg = ρgbcg + θgρwcw (3.52)

where cg [J/kg/K] is the specific heat of the dry soil, ρw [kg/m
3] is the density of water,

and cw [J/kg/K] is the specific heat of water. The bulk density of the dry soil ρgb [kg/m
3]

is given by

ρgb = (1− θs)ρg (3.53)

where ρg [kg/m
3] is the density of the soil particles. A generally accepted number for all soil

types is ρg = 2.65 · 103kg/m3. For the volumetric moisture content and the porosity which
enter the parameterization we choose values averaged over the top layer of thickness δg of
the force-restore approximation.
Following [Chung and Horton, 1987], the thermal conductivity λg [W/m/K] can be

parameterized as

λg = β
λg
1 + β

λg
2 θg + β

λg
3

√
θg (3.54)

The β
λg
i depend on the soil type (Table B.5). Figure 3.3 shows the volumetric heat capacity,

the thermal conductivity, the thermal diffusivity, and the damping depth as functions of
the saturation for three soil types [Chung and Horton, 1987]. We adopt the approximation
of a constant heat diffusivity KT which is justifiable for not too dry conditions, Wg & 0.1.
This is important because for constant KT the force-restore parameters αg, dg, Γg, and Γ

′
g

are also constant and need not be computed at each time step.

3.1.8 Thickness and Number of Soil Layers

In the article by Ács et al. [1991], the thickness of the uppermost soil layer for the moisture
submodel is 10cm, whereas the thickness of the top layer for the temperature submodel
is δg = 2cm. This disparity is somewhat inconsistent with the model formulation, because
the thermal properties of the soil depend on the soil water content. A top moisture layer
of 10cm thickness can only represent an average moisture value, and it cannot resolve the
moisture content of the top 2cm, which is used in the temperature submodel.
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Figure 3.3: Soil thermal properties: volumetric heat capacity (upper left), thermal
conductivity (upper right), thermal diffusivity (lower left), and damping depth (lower
right) as functions of the saturation Wg. The parameters are ρg = 2.65 · 103kg/m3,
θs = 0.4, cg = 900J/kg/K .

To be consistent within the force-restore approximation, the layer for the temperature Tg
should also correspond as much as possible to the layer in which the temperature actually
fluctuates. A measure for the thickness δg of this layer is the damping depth dg of the
diurnal forcing. Recall from Figure 3.3 that the damping depth dg varies between 7cm
and 15cm for various soil types and over a wide range of moisture conditions. Similarly, Hu
and Islam [1995] cite damping depths dg that range from 5cm (clay) to 20cm (rock).

Now note that appreciable errors due to the neglect of higher harmonics can occur in
the force-restore method if the upper soil thickness δg is less than the damping depth of the
diurnal forcing [Hu and Islam, 1995]. This suggests the use of a thicker top soil layer for
the temperature submodel. On the other hand, the ground surface temperature Tg from
the force-restore method is used in the computation of the boundary fluxes and will also
be used for the Radiative Transfer model (Section 3.2). We are therefore interested in the
temperature of a shallow layer. Moreover, the diurnal heat wave is much stronger than the
higher harmonics, so the errors due to the neglect of higher harmonics should be bearable.

The best overall compromise for moisture and heat transport seems to be a single value
of 5cm for both the top moisture layer and the δg-layer of the force-restore approximation.
For the lower layers in the moisture submodel, we use a few layers which reflect the mea-
surement levels of existing time-domain reflectometry (TDR) profile measurement devices.
Generally, we work with six layers ranging from 0–5cm, 5–15cm, 15–30cm, 30–45cm, 45–
60cm, and 60–90cm. This allows for the assimilation of data from field experiments such
as the Southern Great Plains 1997 (SGP97) experiment (Section 5.3.1).
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3.2 Radiative Transfer Model

In this Section we describe a model for the Radiative Transfer (RT). It relates the soil
moisture and temperature to the remotely sensed radiobrightness temperature TB , which
is a measure of the microwave energy emitted by the soil. In Section 3.2.1 we first describe
a model for microwave emission from bare soil, and we then give a complete description in
the presence of a vegetation cover in Section 3.2.2.

3.2.1 Microwave Emission from Bare Soil

For microwave emission from bare soil, various coherent and incoherent Radiative Transfer
models can be found in the literature [Njoku and Kong, 1977; Wilheit, 1978; Schmugge and
Choudhury, 1981; Choudhury et al., 1982; Raju et al., 1995]. Most recently, Galantowicz
et al. [1999] discussed and compared several options such as conventional RT, a gradient RT
approximation, a grey body approximation, and a coherent model for a stratified medium.
In a non-coherent model, the observed radiobrightness temperature TB is factored into

the microwave emissivity εg and the effective soil temperature T
eff
g .

T bareB = εgT
eff
g (3.55)

The model then consists of three parts:

1. The wet soil dielectric constant is computed from the dielectric constants of dry soil
and water depending on the volumetric soil moisture content (Dobson mixing formula).

2. The microwave emissivity εg is obtained from the wet soil dielectric constant (Fresnel
equations).

3. The effective temperature T effg is determined from the soil temperature profile and
possibly the dielectric constant.

In the following subsections, we will discuss each of these steps separately.

Wet Soil Dielectric Constant

The dielectric constant of the wet soil kg is obtained from the dielectric constants of the
dry soil and the soil water, which are evaluated at the microwave frequency of interest.
For L-band observations, for instance, the frequency is νr = 1.4GHz. Ulaby et al. [1986]
present among other models a semi-empirical mixing model which makes use of soil texture
information in order to account for the bound water contribution in an aggregate way. We
call their model the Dobson mixing model because it is an improved version of the semi-
empirical mixing model presented by Dobson et al. [1985]. In particular, the model for the
wet soil dielectric constant reads

kg =

{
1 + (1− θs)(k

κ
kg
1
gd − 1) + θg

βkg
(k
κ
kg
1
w − 1)

}(1/κkg1 )
(3.56)

with

βkg = κ
kg
2 − κ

kg
3 fS − κ

kg
4 fC (3.57)
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where fS [−] and fC [−] are the sand and clay fractions of the soil in question. The κ
kg
i

are empirical constants. Their values can be found in Table B.7. The porosity θs and the
volumetric moisture content θg are appropriate averages over depth (Section 3.2.1). For
L-band observations, Galantowicz et al. [1999] used averaging depths of 1.5cm and 2cm for
gradient RT and grey body RT, respectively (Section 3.2.1). In our coarse discretization
(Section 3.1.8) we best use an average moisture content and an average porosity over the
top layer.
The dielectric constant of the dry soil kgd depends only very weakly on the density of

the soil particles. A good approximation for all soil types is [Dobson et al., 1985]

kgd = 4.67 (3.58)

The dielectric constant of water kw [−] at the microwave frequency νr [Hz] and tempera-
ture T [K] is determined with a Debye model [Ulaby et al., 1986].

kw = kw∞ +
(kw0 − kw∞)

1 + (2πνrτw)2
(1 + i · 2πνrτw) (3.59)

where kw∞ = 4.9 is the high frequency limit of kw. The static limit kw0 [−] as well as the
relaxation time of water τw [s] are given by Taylor series expansions.

kw0 = κ
kw0
1 + κkw02 (T − T0) + κ

kw0
3 (T − T0)

2 + κkw04 (T − T0)
3 (3.60)

τw =
1

2π

{
κτw1 + κ

τw
2 (T − T0) + κ

τw
3 (T − T0)

2 + κτw4 (T − T0)
3
}

(3.61)

The coefficients κτwi and κ
kw0
i are listed in Table B.7. The reference temperature is T0 =

273.15K. We choose for the temperature T = Tg from the force-restore approximation
(Section 3.2.1).
Figure 3.4 shows the dependence of the wet soil dielectric constant on soil moisture

for the five soil types discussed by Dobson et al. [1985] together with the wet soil dielectric
constant derived from two dielectric mixing models presented by Birchak et al. [1974], which
we will not discuss here. Figure 3.5 shows the dielectric constant of water at frequency νr =
1.4GHz as a function of temperature. Note that the temperature effect is of the same order
as the texture effect (Figure 3.4).

Microwave Emissivity

The microwave emissivity for a smooth soil surface is readily obtained from the Fresnel
equations. The microwave emissivities of the soil for horizontal polarization εsmoothgh and for

vertical polarization εsmoothgv are for a look-angle φr from nadir (in air)

εsmoothgh = 1−

∣∣∣∣∣∣
kg cos φr −

√
kg − sin

2 φr

kg cos φr +
√
kg − sin

2 φr

∣∣∣∣∣∣
2

(3.62)

εsmoothgv = 1−

∣∣∣∣∣∣
cosφr −

√
kg − sin

2 φr

cosφr +
√
kg − sin

2 φr

∣∣∣∣∣∣
2

(3.63)

εsmoothgn = 1−

∣∣∣∣∣
√
kg − 1√
kg + 1

∣∣∣∣∣
2

(3.64)
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Figure 3.4: Wet soil dielectric constant for the five soil types discussed by Dobson
et al. [1985] together with the wet soil dielectric constant derived from two dielectric
mixing models presented by Birchak et al. [1974] at Tg = 300K and 1.4GHz as a
function of the volumetric moisture content.
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The last equation shows the microwave emissivity for incidence from nadir (φr = 0). For
microwave frequencies and look-angles φr ≈ 10◦ the nadir incidence formula is a very good
approximation for both the horizontal and vertical polarization formulae. Note also that
strictly speaking the emissivities are zero if the look-angle φr is larger than the critical angle
at which total reflection occurs. We do not consider this case and assume that φr is small
enough.
Figure 3.6 shows the microwave emissivities for the five soil types discussed by Dob-

son et al. [1985] together with the emissivities derived from two dielectric mixing models
presented by Birchak et al. [1974], which we will not discuss here.

Roughness Effects The previous discussion assumed the soil surface to be smooth, but
this is rarely the case in nature. Roughness effects can be taken into account with a simple
one-parameter model developed by Choudhury et al. [1979]. The overall effect of roughness
is to increase the emissivity, that is to decrease the reflectivity. In the model, the reflectivity
is modified by an exponential term including the roughness parameter βεg [−]

εgp = 1− (1− ε
smooth
gp ) exp(−βεg cos2 φr) (3.65)

Using (3.62), the emissivity for incidence from nadir (φr = 0) is

εgn = 1−

∣∣∣∣∣
√
kg − 1√
kg + 1

∣∣∣∣∣
2

exp(−βεg) (3.66)

Effective Temperature

The effective temperature generally depends on the soil temperature and moisture profiles,
where the moisture profile enters primarily through the dielectric constant. For our objec-
tives, there are primarily two choices of models: the gradient RT model and the grey body
RT approximation, which are both non-coherent models.
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Figure 3.6: Microwave emissivities εsmoothgh for horizontal polarization (φr = 10
◦) for

the five different soils in [Dobson et al., 1985] and for two models presented by Birchak
et al. [1974] at Tg = 300K .

Gradient RT Model In the gradient RT model, the effective temperature is given by

T effg = T (zgrad)−
(1− cgrad) cosφg

αe

dT

dz

∣∣∣∣
zgrad

(3.67)

where

αe =
4πνr
clight

Im
√
kg

is the attenuation coefficient and

zgrad = −
cgrad cosφg

αe

is an effective depth for the gradient RT model. The in-soil propagation angle φg is obtained
from Snellius’ law.

φg = arcsin(sinφr/
√
kg) (3.68)

The speed of light is clight = 3 · 10
8m/s, and finally, cgrad is a gradient RT parameter.

Galantowicz et al. [1999] use cgrad = 1.03. Figure 3.7 shows the gradient RT effective
depth zgrad for the same soils and models as Figure 3.6.

Grey Body RT Model In a grey body approximation, one simply uses

T effg = T (zgrey) (3.69)

The parameter zgrey determines the depth at which the temperature is evaluated. For
L-band observations, Galantowicz et al. [1999] use a depth of zgrey = 1.5cm.
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Figure 3.7: Gradient RT effective depth zgrad for the five different soils in [Dobson
et al., 1985] and for two models presented by Birchak et al. [1974].

Choice of a Model The appropriate choice of the RT model depends on the damping
depth dg and the resulting discretization δg chosen in the force-restore approximation of the
heat equation (Section 3.1.2). Recall that the damping depth dg describes the penetration
depth of the diurnal heat wave, whereas zgrey and zgrad relate to the penetration depths of
the microwaves.
According to Galantowicz et al. [1999], the gradient RT model is superior to the grey

body approximation over the full diurnal cycle if the parameters are calibrated with day-
time data. However, the force-restore model provides an approximate temperature gra-
dient only at a depth dg ≈ δg. Now recall from Figure 3.7 that for all soils and most
moisture conditions, zgrad . 5cm. Compared to the typical damping depth and discretiza-
tion dg & δg ≈ 5cm (Section 3.1.2), we see that the use of the gradient RT model might be
inappropriate. From the force-restore method, we cannot get the temperature gradient we
need in the gradient RT approximation. In summary, we therefore use the grey body RT
approximation with T effg = Tg.

3.2.2 Microwave Emission in the Presence of a Canopy

If vegetation is present, the radiation observed by the instrument is given by

TB =(1− fc)εgT
eff
g

+ fc

[
εgT

eff
g αc + (1− αc)Tc + (1− αc)Tc(1− εg)αc

] (3.70)

The first term (proportional to (1− fc)) is the direct microwave emission from the bare or
unshaded portion of the soil. The other three terms (proportional to fc) are

• emission from the soil attenuated by the canopy,
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Vegetation type δc cos φr [−] Wv [kg/m
2] βδc [m2/kg]

Corn - - 0.115

Corn 0.452 4.0 0.113

Corn 0.163 1.2 0.133

Corn 0.611 6.0 0.102

Soybean - - 0.086

Soybean 0.087 1.0 0.087

Sorghum 0.613 5.4 0.105

Winter Rye 0.080 0.7 0.114

Short Grass 0.093 0.3 0.300

Tall Grass 0.288 0.4 0.720

Tall Grass - 0.5 0.150

Rangeland, Pasture - - 0.098

Table 3.1: L-band (wavelength 21cm) parameters for the canopy transmissivity [Jackson
and Schmugge, 1991].

• direct (upward) emission from the canopy (neglecting canopy reflection, that is emis-
sion equals absorption equals one-minus-transmission),

• ground surface reflection of emission from the canopy and attenuated by the canopy.

The model follows [Ulaby et al., 1986] (p. 1552), where we neglected the scattering albedo
[Jackson and Schmugge, 1991]. We can rewrite (3.70) as

TB = [1− fc(1− αc)] εgT
eff
g + fcTc [(1− αc)(1 + (1− εg)αc)]

=
{
[1− fc(1− αc)]T

eff
g − [fcαc(1− αc)]Tc

}
εg + fc(1− α

2
c)Tc

(3.70a)

The canopy microwave attenuation αc [−] depends on the canopy optical thickness δc [−].

αc = exp(−δc) (3.71)

The optical thickness is parameterized as

δc = β
δcWv/ cos φr (3.72)

whereWv [kg/m
2] is the vegetation water content, and φr is the look-angle from nadir. For

the L-band (νr = 1.4GHz), some of the parameters given by Jackson and Schmugge [1991]
can be found in Table 3.1.
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